Powered By Blogger

Belajar, belajar dan belajar..........

Belajar, belajar dan belajar..........

Minggu, 07 Februari 2010

Cara Gampang Belajar Kimia



Pengantar dan Senyawa Unsur

Tabel periodik ini dibuat untuk menentukan sifat-sifat unsur yang ada di alam ini. Pada masing-masing unsur meliputi: lambang unsur, nomor atom, massa atom atau isotop yang paling stabil, serta golongan dan nomor periode dalam tabel periodik.
Ditemukan oleh: Dmitri Mendeleev ( bahasa Rusia: Dmitriy Ivanovich Mendeleyev) (1834-1907) ialah seorang ahli kimia dari Kekaisaaran Rusia yang menciptakan tabel periodik berdasarkan peningkatan bilangan atom. Bilangan ini menunjukkan jumlah proton yang terdapat dalam inti atom. Jumlah proton sama dengan jumlah elektron yang mengelilingi atom bebas.

Ia menemukannya sewaktu menyiapkan sebuah buku pelajaran untuk mahasiswanya . Ia menemukan bahwa jika ia menata unsur-unsur menurut kenaikan massa atom, unsur dengan sifat yang mirip akan muncul dengan selang yang berskala. Ia berhasil menyajikan hasil kerjanya pada Himpunan Kimia Rusia di awal 1869.


UNSUR
Definisi :
Unsur adalah zat murni tunggal yang membentuk menyusun suatu materi… Di alam terdapat ratusan unsur yang telah ditemukan oleh para ilmuan yang terbagi dan tertata rapih dalam susunan tabel sistem periodik unsur Pada table periodik, Kalo arahnya vertical tu menunjukan suatu golongan dan Kalo arahnya horizontal itu menunjukan suatu periode Demi pemahaman lebih lanjut smua unsur dalam table periodic harus smuanya hafal!! Tapi yang paling penting untuk aplikasi kedepan... harus hafal dulu aja unsur-unsur golongan utama, yaitu golongan IA - VIIIA …
Ni gw kasih kunci2nya tuk gampang n mudah menghafal, dengan membikin kalimat yang fan


IA : disebut juga golongan alkali.

H Li Na K Rb Cs Fr (hah…lina kaget, Robi Cs frustasi)

IIA : disebut juga golongan alkali tanah
Be Mg Ca SR Ba Ra (beuh….minggu ni cakka siaran bareng radio)

IIIA : disebut juga golongan boron

B Al Ga In Tl (bagas al irshadi ganteng In Tlek …) .. maksa banget!


IV A: disebut juga golongan karbon

C Si Ge Sn Pb (cewe sini genit sneng playboy)


VA : disebut golongan Nitrogen
N P As Sb Bi (neng popi asik sambung bibir) hahahha….

VIA : disebut juga golongan oksigen
O S Se Te Po (orang sinting selalu tembak polisi)


VII A : di sebut juga golongan Halogen

F Cl Br I At (fei calon brilian Intan At)
.. kiriman kak Vei

VIIIA : di sebut juga golongan gas mulia

He Ne Ar Kr Xe Rn ( heboh negeri amerika karena serangan ranjau)
Hahaha..

cukup gampang kan ngapalinnya?

Energi Aktifasi dan Persamaan Arrhenius


Energi aktivasi adalah energi minimum yang harus dipenuhi agar reaksi dapat berjalan. Istilah energi aktifasi (Ea) pertama kali diperkenalkan oleh Svante Arrhenius dan dinyatakan dalam satuan kilojule per mol.

Jika terdapat suatu reaksi sebagai berikut:

Reaktan -> Produk

Maka jika reaksi diatas berlangsung secara eksoterm maka diagram energi aktifasinya adalah sebagai berikut:

grafikreaksieksoterm

Dan jika reaksinya endoterm maka diagramnya adalah sebagai berikut:

grafikreaksiendoterm

Persamaan Arrhenius mendefisinkan secara kuantitatif hubungan antara energi aktivasi dengan konstanta laju reaksi,

persamaanarrhenius

Dimana A adalah factor frekuensi dari reaksi, R adalah konstanta universal gas, T adalah temperature dalam Kelvin dan k adalah konstanta laju reaksi. Dari persamaan diatas dapat diketahui bahwa Ea dipengaruhi oleh temperature.

Adanya katalis dalam suatu reaksi akan memperkecil besarnya energi aktifasi yang dimiliki oleh reaksi, dan dapat digambarkan dengan grafik berikut ini:

grafikkatalis

Grafik biru adalah reaksi tanpa katalis dan grafik merah adalah reaksi dengan katalis dapat dilihat Ea1 (tanpa katalis) lebih besar daripada E2 (dengan katalis). Jadi adanya katalis akan memperkecil Ea reaksi sehingga reaksi dapat berlangsung dengan lebih cepat

Orde Reaksi

Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.

Suatu reaksi yang diturunkan secara eksperimen dinyatakan dengan rumus kecepatan reaksi :

v = k (A) (B) 2

persamaan tersebut mengandung pengertian reaksi orde 1 terhadap zat A dan merupakan reaksi orde 2 terhadap zat B. Secara keselurahan reaksi tersebut adalah reaksi orde 3.

Contoh soal:

Dari reaksi 2NO(g) + Br2(g) ® 2NOBr(g)

dibuat percobaan dan diperoleh data sebagai berikut:

No. (NO) mol/l (Br2) mol/l Kecepatan Reaksi
mol / 1 / detik
1. 0.1 0.1 12
2. 0.1 0.2 24
3. 0.1 0.3 36
4. 0.2 0.1 48
5. 0.3 0.1 108

Pertanyaan:

a. Tentukan orde reaksinya !
b. Tentukan harga k (tetapan laju reaksi) !

Jawab:

a.

Pertama-tama kita misalkan rumus kecepatan reaksinya adalah V = k(NO)x(Br2)y : jadi kita harus mencari nilai x den y.
Untuk menentukan nilai x maka kita ambil data dimana konsentrasi terhadap Br2 tidak berubah, yaitu data (1) dan (4).
Dari data ini terlihat konsentrasi NO naik 2 kali sedangkan kecepatan reaksinya naik 4 kali maka :

2x = 4 ® x = 2 (reaksi orde 2 terhadap NO)

Untuk menentukan nilai y maka kita ambil data dimana konsentrasi terhadap NO tidak berubah yaitu data (1) dan (2). Dari data ini terlihat konsentrasi Br2 naik 2 kali, sedangkan kecepatan reaksinya naik 2 kali, maka :

2y = 2 ® y = 1 (reaksi orde 1 terhadap Br2)

Jadi rumus kecepatan reaksinya : V = k(NO)2(Br2) (reaksi orde 3)

b.

Untuk menentukan nilai k cukup kita ambil salah satu data percobaan saja misalnya data (1), maka:

V = k(NO)2(Br2)
12 = k(0.1)2(0.1)

k = 12 x 103 mol-212det-1

Sifat-Sifat Koloid

Sifat-sifat khas koloid meliputi :

a.

Efek Tyndall
Efek Tyndall adalah efek penghamburan cahaya oleh partikel koloid.

b.

Gerak Brown
Gerak Brown adalah gerak acak, gerak tidak beraturan dari partikel koloid.


Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+

Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-
c.

Adsorbsi
Beberapa partikel koloid mempunyai sifat adsorbsi (penyerapan) terhadap partikel atau ion atau senyawa yang lain.
Penyerapan pada permukaan ini disebut adsorbsi (harus dibedakan dari absorbsi yang artinya penyerapan sampai ke bawah permukaan).
Contoh :
(i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+.
(ii) Koloid As2S3 bermuatan negatit karena permukaannya menyerap ion S2.

d.

Koagulasi
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid.
Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.

e.

Koloid Liofil dan Koloid Liofob
Koloid ini terjadi pada sol yaitu fase terdispersinya padatan dan medium pendispersinya cairan.

Koloid Liofil: sistem koloid yang affinitas fase terdispersinya besar terhadap medium pendispersinya.
Contoh: sol kanji, agar-agar, lem, cat
Koloid Liofob: sistem koloid yang affinitas fase terdispersinya kecil terhadap medium pendispersinya.
Contoh: sol belerang, sol emas.

Energi-Energi Dan Ikatan Kimia

Reaksi kimia merupakan proses pemutusan dan pembentukan ikatan. Proses ini selalu disertai perubahan energi. Energi yang dibutuhkan untuk memutuskan ikatan kimia, sehingga membentuk radikal-radikal bebas disebut energi ikatan. Untuk molekul kompleks, energi yang dibutuhkan untuk memecah molekul itu sehingga membentuk atom-atom bebas disebut energi atomisasi.

Harga energi atomisasi ini merupakan jumlah energi ikatan atom-atom dalam molekul tersebut. Untuk molekul kovalen yang terdiri dari dua atom seperti H2, 02, N2 atau HI yang mempunyai satu ikatan maka energi atomisasi sama dengan energi ikatan Energi atomisasi suatu senyawa dapat ditentukan dengan cara pertolongan entalpi pembentukan senyawa tersebut. Secara matematis hal tersebut dapat dijabarkan dengan persamaan :

DH reaksi = S energi pemutusan ikatan - S energi pembentukan ikatan
= S energi ikatan di kiri - S energi ikatan di kanan

Contoh:

Diketahui :

energi ikatan

C - H = 414,5 kJ/Mol
C = C = 612,4 kJ/mol
C - C = 346,9 kJ/mol
H - H = 436,8 kJ/mol

Ditanya:

DH reaksi = C2H4(g) + H2(g) ® C2H6(g)

DH reaksi = Jumlah energi pemutusan ikatan - Jumlah energi pembentukan ikatan

= (4(C-H) + (C=C) + (H-H)) - (6(C-H) + (C-C))
= ((C=C) + (H-H)) - (2(C-H) + (C-C))
= (612.4 + 436.8) - (2 x 414.5 + 346.9)
= - 126,7 kJ

Hitungan Kimia

Hitungan kimia adalah cara-cara perhitungan yang berorientasi pada hukum-hukum dasar ilmu kimia.

Dalam hal ini akan diberikan bermacam-macam contoh soal hitungan kimia beserta pembahasanya.

Contoh-contoh soal :

1.

Berapa persen kadar kalsium (Ca) dalam kalsium karbonat ? (Ar: C = 12 ; O= 16 ; Ca=40)

Jawab :

1 mol CaCO, mengandung 1 mol Ca + 1 mol C + 3 mol O
Mr CaCO3 = 40 + 12 + 48 = 100
Jadi kadar kalsium dalam CaCO3 = 40/100 x 100% = 40%

2.

Sebanyak 5.4 gram logam alumunium (Ar = 27) direaksikan dengan asam klorida encer berlebih sesuai reaksi :

2 Al (s) + 6 HCl (aq) ® 2 AlCl3 (aq) + 3 H2 (g)

Berapa gram aluminium klorida dan berapa liter gas hidrogen yang dihasilkan pada kondisi standar ?

Jawab:

Dari persamaan reaksi dapat dinyatakan
2 mol Al x 2 mol AlCl3 ®
3 mol H2
5.4 gram Al = 5.4/27 = 0.2 mol

Jadi:

AlCl3 yang terbentuk = 0.2 x Mr AlCl3 = 0.2 x 133.5 = 26.7 gram
Volume gas H2 yang dihasilkan (0o C, 1 atm) = 3/2 x 0.2 x 22.4 = 6.72 liter

3.

Suatu bijih besi mengandung 80% Fe2O3 (Ar: Fe=56; O=16). Oksida ini direduksi dengan gas CO sehingga dihasilkan besi.
Berapa ton bijih besi diperlukan untuk membuat 224 ton besi ?

Jawab:

1 mol Fe2O3 mengandung 2 mol Fe
maka : massa Fe2O3 = ( Mr Fe2O3/2 Ar Fe ) x massa Fe = (160/112) x 224 = 320 ton
Jadi bijih besi yang diperlukan = (100 / 80) x 320 ton = 400 ton

4.

Untuk menentukan air kristal tembaga sulfat 24.95 gram garam tersebut dipanaskan sampai semua air kristalnya menguap. Setelah pemanasan massa garam tersebut menjadi 15.95 gram. Berapa banyak air kristal yang terkandung dalam garam tersebut ?

Jawab :

misalkan rumus garamnya adalah CuSO4 . xH2O

CuSO4 . xH2O ® CuSO4 + xH2O

24.95 gram CuSO4 . xH2O = 159.5 + 18x mol

15.95 gram CuSO4 = 159.5 mol = 0.1 mol

menurut persamaan reaksi di atas dapat dinyatakan bahwa:
banyaknya mol CuS04 . xH2O = mol CuSO4; sehingga persamaannya

24.95/ (159.5 + 18x) = 0.1 ® x = 5

Jadi rumus garamnya adalah CuS04 . 5H2O

Rumus Empiris dan Rumus Molekul

Rumus empiris adalah rumus yang paling sederhana dari suatu senyawa.
Rumus ini hanya menyatakan perbandingan jumlah atom-atom yang terdapat dalam molekul.
Rumus empiris suatu senyawa dapat ditentukan apabila diketahui salah satu:
- massa dan Ar masing-masing unsurnya
- % massa dan Ar masing-masing unsurnya
- perbandingan massa dan Ar masing-masing unsurnya

Rumus molekul: bila rumus empirisnya sudah diketahui dan Mr juga diketahui maka rumus molekulnya dapat ditentukan.

Contoh: Suatu senyawa C den H mengandung 6 gram C dan 1 gram H.
Tentukanlah rumus empiris dan rumus molekul senyawa tersebut bila diketahui Mr nya = 28 !
Jawab:

mol C : mol H = 6/12 : 1/1 = 1/2 : 1 = 1 : 2
Jadi rumus empirisnya: (CH2)n

Bila Mr senyawa tersebut = 28 maka: 12n + 2n = 28 ® 14n = 28 ® n = 2

Jadi rumus molekulnya : (CH2)2 = C2H4

Contoh: Untuk mengoksidasi 20 ml suatu hidrokarbon (CxHy) dalam keadaan gas diperlukan oksigen sebanyak 100 ml dan dihasilkan CO2 sebanyak 60 ml. Tentukan rumus molekul hidrokarbon tersebut !
Jawab:

Persamaan reaksi pembakaran hidrokarbon secara umum

CxHy (g) + (x + 1/4 y) O2 (g) ® x CO2 (g) + 1/2 y H2O (l)
Koefisien reaksi menunjukkan perbandingan mol zat-zat yang terlibat dalam reaksi.
Menurut Gay Lussac gas-gas pada p, t yang sama, jumlah mol berbanding lurus dengan volumenya

Maka:

mol CxHy : mol O2 : mol CO2 = 1 : (x + 1/4y) : x
20 : 100 : 60 = 1 : (x + 1/4y) : x
1 : 5 : 3 = 1 : (x + 1/4y) : x

atau:

1 : 3 = 1 : x ® x = 3
1 : 5 = 1 : (x + 1/4y) ®
y = 8
Jadi rumus hidrokarbon tersebut adalah : C3H8

Hukum-Hukum Dasar Ilmu Kimia

STOIKIOMETRI adalah cabang ilmu kimia yang mempelajari hubungan kuantitatif dari komposisi zat-zat kimia dan reaksi-reaksinya.

1.

HUKUM KEKEKALAN MASSA = HUKUM LAVOISIER
"Massa zat-zat sebelum dan sesudah reaksi adalah tetap".

Contoh:
hidrogen + oksigen ® hidrogen oksida
(4g) (32g) (36g)

2.

HUKUM PERBANDINGAN TETAP = HUKUM PROUST
"Perbandingan massa unsur-unsur dalam tiap-tiap senyawa adalah tetap"

Contoh:

a. Pada senyawa NH3 : massa N : massa H
= 1 Ar . N : 3 Ar . H
= 1 (14) : 3 (1) = 14 : 3
b. Pada senyawa SO3 : massa S : massa 0
= 1 Ar . S : 3 Ar . O
= 1 (32) : 3 (16) = 32 : 48 = 2 : 3

Keuntungan dari hukum Proust:
bila diketahui massa suatu senyawa atau massa salah satu unsur yang membentuk senyawa tersebut make massa unsur lainnya dapat diketahui.

Contoh:
Berapa kadar C dalam 50 gram CaCO3 ? (Ar: C = 12; 0 = 16; Ca=40)
Massa C = (Ar C / Mr CaCO3) x massa CaCO3
= 12/100 x 50 gram = 6 gram
massa C
Kadar C = massa C / massa CaCO3 x 100%
= 6/50 x 100 % = 12%

3.

HUKUM PERBANDINGAN BERGANDA = HUKUM DALTON
"Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana".

Contoh:

Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16

Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4.

HUKUM-HUKUM GAS
Untuk gas ideal berlaku persamaan : PV = nRT

dimana:
P = tekanan gas (atmosfir)
V = volume gas (liter)
n = mol gas
R = tetapan gas universal = 0.082 lt.atm/mol Kelvin
T = suhu mutlak (Kelvin)

Perubahan-perubahan dari P, V dan T dari keadaan 1 ke keadaan 2 dengan kondisi-kondisi tertentu dicerminkan dengan hukum-hukum berikut:


A.

HUKUM BOYLE
Hukum ini diturunkan dari persamaan keadaan gas ideal dengan
n1 = n2 dan T1 = T2 ; sehingga diperoleh : P1 V1 = P2 V2

Contoh:
Berapa tekanan dari 0 5 mol O2 dengan volume 10 liter jika pada temperatur tersebut 0.5 mol NH3 mempunyai volume 5 liter den tekanan 2 atmosfir ?

Jawab:
P1 V1 = P2 V2
2.5 = P2 . 10 ® P2 = 1 atmosfir

B.

HUKUM GAY-LUSSAC
"Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana".

Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1
/ V2 = n1 / n2

Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2) jika pada kondisi tersebut 1 liter gas hidrogen (H2) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14

Jawab:

V1/V2 = n1/n2 ® 10/1 = (x/28) / (0.1/2) ® x = 14 gram

Jadi massa gas nitrogen = 14 gram.

C.

HUKUM BOYLE-GAY LUSSAC
Hukum ini merupakan perluasan hukum terdahulu den diturukan dengan keadaan harga n = n2 sehingga diperoleh persamaan:

P1 . V1 / T1 = P2 . V2 / T2

D. HUKUM AVOGADRO
"Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.

Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)

Jawab:
85 g amoniak = 17 mol = 0.5 mol

Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter

Berdasarkan persamaan Boyle-Gay Lussac:

P1 . V1 / T1 = P2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27) ® V2 = 12.31 liter